Ubuntu16.04+Titan X+CUDA8.0+cudnn5.1+Caffe

1.安装Ubuntu16.04 LTS x64

利用工具rufus制作USB系统盘(官方下载64位版本: ubuntu-16.04-desktop-amd64.iso),因为已有Win7系统,此处选择“Install Ubuntu alongside Windows Boot Manager”,分区采用默认选择,语言选择English,安装完毕。

注:此时显示器VGA接口接到主板集成显卡接口上。

2.更新源

cd /etc/apt/
sudo cp sources.list sources.list.bak
sudo gedit sources.list

在sources.list文件头部添加如下源:

deb http://mirrors.ustc.edu.cn/ubuntu/ xenial main restricted universe multiverse
deb http://mirrors.ustc.edu.cn/ubuntu/ xenial-security main restricted universe multiverse
deb http://mirrors.ustc.edu.cn/ubuntu/ xenial-updates main restricted universe multiverse
deb http://mirrors.ustc.edu.cn/ubuntu/ xenial-proposed main restricted universe multiverse
deb http://mirrors.ustc.edu.cn/ubuntu/ xenial-backports main restricted universe multiverse
deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial main restricted universe multiverse
deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial-security main restricted universe multiverse
deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial-updates main restricted universe multiverse
deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial-proposed main restricted universe multiverse
deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial-backports main restricted universe multiverse

然后更新源和安装的包:

sudo apt-get update
sudo apt-get upgrade

3.安装NVIDIA显卡驱动

采用ppa安装方式,没选择最新的nvidia-370,我选择了nvidia-367。

Ctrl+Alt+F1进入tty命令控制台,停止lightdm,然后开始安装驱动。

sudo services lightdm stop

sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt-get updates
sudo apt-get install nvidia-367
sudo apt-get install mesa-common-dev
sudo apt-get install freeglut3-dev
sudo reboot

将显示器VGA接口换到NVIDIA显卡上。

4.修改分辨率

启动到界面之后发现分辨率只有1366x768,显示器适合1920x1080,采用xrandr并修改xorg.conf来解决。

sudo gedit /etc/X11/xorg.conf
修改如下:
HorizSync 31.0 - 84.0
VertRefresh 56.0-77.0

即最终的xorg.conf文件为:

Section "Device"    
    Identifier "Configured Video Device"
EndSection

Section "Monitor"
    Identifier "Configured Monitor"
    Horizsync 30-84
    Vertrefresh 56-77
EndSection

Section "Screen"
Identifier "Default Screen"
Monitor "Configured Monitor"
Device "Configured Video Device"
    SubSection "Display"
        Modes "1920x1080" "1360x768" "1024x768" "1152x864"
    EndSubSection
EndSection        

注销系统再次登录后,选择适合的桌面分辨率即可。

5.安装CUDA8.0

到官网下载cuda_8.0.44_linux.run,复制到根目录下。

sudo sh cuda_8.0.44_linux.run --tmpdir=/tmp/

遇到问题:incomplete installation,然后执行

sudo apt-get install freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libgl1-mesa-glx libglu1-mesa libglu1-mesa-dev
sudo sh cuda_8.0.44_linux.run -silent -driver

注:此时安装过程中提示是否要安装NVIDIA驱动时选择no。其他选择yes或默认即可。

Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 361.62? (y)es/(n)o/(q)uit: n

安装完毕后声明环境变量:

sudo gedit ~/.bashrc

在.bashrc尾部添加如下内容:

export PATH=/usr/local/cuda-8.0/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

测试下安装是否成功:

测试1:

cd NVIDIA_CUDA-8.0_Samples/
nvidia-smi

输出:

Tue Oct 18 15:20:34 2016       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 367.44                 Driver Version: 367.44                    |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  GeForce GTX TIT...  Off  | 0000:01:00.0      On |                  N/A |
| 22%   48C    P5    27W / 250W |    169MiB / 12205MiB |      1%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID  Type  Process name                               Usage      |
|=============================================================================|
|    0      2421    G   /usr/lib/xorg/Xorg                             105MiB |
|    0     10062    G   compiz                                          63MiB |
+-----------------------------------------------------------------------------+

测试2:

cd 1_Utilities/deviceQuery
make
........
./deviceQuery 

输出:

./deviceQuery Starting...

 CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "GeForce GTX TITAN X"
  CUDA Driver Version / Runtime Version          8.0 / 8.0
  CUDA Capability Major/Minor version number:    5.2
  Total amount of global memory:                 12205 MBytes (12798197760 bytes)
  (24) Multiprocessors, (128) CUDA Cores/MP:     3072 CUDA Cores
  GPU Max Clock rate:                            1076 MHz (1.08 GHz)
  Memory Clock rate:                             3505 Mhz
  Memory Bus Width:                              384-bit
  L2 Cache Size:                                 3145728 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
  Maximum Layered 1D Texture Size, (num) layers  1D=(16384), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(16384, 16384), 2048 layers
  Total amount of constant memory:               65536 bytes
  Total amount of shared memory per block:       49152 bytes
  Total number of registers available per block: 65536
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  2048
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
  Maximum memory pitch:                          2147483647 bytes
  Texture alignment:                             512 bytes
  Concurrent copy and kernel execution:          Yes with 2 copy engine(s)
  Run time limit on kernels:                     Yes
  Integrated GPU sharing Host Memory:            No
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Disabled
  Device supports Unified Addressing (UVA):      Yes
  Device PCI Domain ID / Bus ID / location ID:   0 / 1 / 0
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 8.0, CUDA Runtime Version = 8.0, NumDevs = 1, Device0 = GeForce GTX TITAN X
Result = PASS

测试3:

cd ../../5_Simulations/nbody/
make
.........
./nbody -benchmark -numbodies=256000 -device=0

输出:

mark -numbodies=256000 -device=0
Run "nbody -benchmark [-numbodies=<numBodies>]" to measure performance.
-fullscreen       (run n-body simulation in fullscreen mode)
-fp64             (use double precision floating point values for simulation)
-hostmem          (stores simulation data in host memory)
-benchmark        (run benchmark to measure performance) 
-numbodies=<N>    (number of bodies (>= 1) to run in simulation) 
-device=<d>       (where d=0,1,2.... for the CUDA device to use)
-numdevices=<i>   (where i=(number of CUDA devices > 0) to use for simulation)
-compare          (compares simulation results running once on the default GPU and once on the CPU)
-cpu              (run n-body simulation on the CPU)
-tipsy=<file.bin> (load a tipsy model file for simulation)

NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.

> Windowed mode
> Simulation data stored in video memory
> Single precision floating point simulation
> 1 Devices used for simulation
gpuDeviceInit() CUDA Device [0]: "GeForce GTX TITAN X
> Compute 5.2 CUDA device: [GeForce GTX TITAN X]
number of bodies = 256000
256000 bodies, total time for 10 iterations: 3104.433 ms
= 211.105 billion interactions per second
= 4222.091 single-precision GFLOP/s at 20 flops per interaction

6.安装OpenCV 3.1.0

从官网下载zip源代码,解压到根目录下。
安装依赖:

sudo apt-get -y remove ffmpeg x264 libx264-dev
sudo apt-get -y install libopencv-dev
sudo apt-get -y install build-essential checkinstall cmake pkg-config yasm
sudo apt-get -y install libtiff4-dev libjpeg-dev libjasper-dev
sudo apt-get -y install libavcodec-dev libavformat-dev libswscale-dev libdc1394-22-dev libxine-dev libgstreamer0.10-dev libgstreamer-plugins-base0.10-dev libv4l-dev
sudo apt-get -y install python-dev python-numpy
sudo apt-get -y install libtbb-dev
sudo apt-get -y install libqt4-dev libgtk2.0-dev
sudo apt-get -y install libfaac-dev libmp3lame-dev libopencore-amrnb-dev libopencore-amrwb-dev libtheora-dev libvorbis-dev libxvidcore-dev
sudo apt-get -y install x264 v4l-utils ffmpeg
sudo apt-get -y install libgtk2.0-dev

cd opencv-3.1.0
mkdir build   
cd build/
cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local -D WITH_TBB=ON -D BUILD_NEW_PYTHON_SUPPORT=ON -D WITH_V4L=ON -D INSTALL_C_EXAMPLES=ON -D INSTALL_PYTHON_EXAMPLES=ON -D BUILD_EXAMPLES=ON -D WITH_QT=ON -D WITH_OPENGL=ON ..
make -j4
sudo make install

遇到的错误:Errors

error: ‘NppiGraphcutState’ has not been declared
error: ‘NppiGraphcutState’ does not name a type
...

解决方法:(由于CUDA版本高于8.0,所以需要做如下修改。在源文件中找到“graphcuts.cpp”)

将:

#include "precomp.hpp"
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)

改为:

#include "precomp.hpp"
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)  || (CUDART_VERSION >= 8000)

because graphcuts is not supported directly with CUDA8 anymore.

安装成功后配置环境:

sudo sh -c 'echo "/usr/local/lib" > /etc/ld.so.conf.d/opencv.conf'
sudo ldconfig

测试OpenCV安装是否成功:

mkdir DisplayImage  
cd DisplayImage 
gedit DisplayImage.cpp 

添加代码:

#include <stdio.h>  
#include <opencv2/opencv.hpp>  
using namespace cv;  

int main(int argc, char** argv)  
{  
     if(argc!= 2)  
     {  
               printf("usage:DisplayImage.out <Image_Path>\n");  
               return -1;  
     }  

     Mat image;  
     image= imread(argv[1], 1);  

    if(!image.data)  
    {  
               printf("Noimage data\n");  
               return -1;  
     }  

     namedWindow("DisplayImage",CV_WINDOW_AUTOSIZE);  
     imshow("DisplayImage",image);  

     waitKey(0);  
     return 0;  
}  

创建CMake文件:

gedit CMakeLists.txt  

添加内容:

cmake_minimum_required(VERSION 2.8)  
project(DisplayImage)  
find_package(OpenCV REQUIRED)  
add_executable(DisplayImage DisplayImage.cpp)  
target_link_libraries(DisplayImage ${OpenCV_LIBS}) 

编译:

cmake .  
make 

执行:

./DisplayImage lena.jpg  

7.安装cudnn 5.1

从官网下载cudnn-8.0-linux-x64-v5.1.tgz for CUDA 8.0. 解压到当前目录:

tar -zxvf cudnn-8.0-linux-x64-v5.1.tgz

解压后的文件如下:

cuda/include/cudnn.h
cuda/lib64/libcudnn.so
cuda/lib64/libcudnn.so.5
cuda/lib64/libcudnn.so.5.1.5
cuda/lib64/libcudnn_static.a

然后执行:

sudo cp cuda/include/cudnn.h /usr/local/cuda/include/
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/
sudo chmod a+r /usr/local/cuda/include/cudnn.h
sudo chmod a+r /usr/local/cuda/lib64/libcudnn*

8.安装MATLAB 2014a

需要注意的是Ubuntu16.04 LTS的gcc版本为5.4,而Matlab2014a支持的是gcc4.7。

用Crack文件中的install替换matlab2014安装目录下/java/jar/下的install文件,然后执行install程序

cd "MatlabFolder"
sudo ./install

注意:选择“不联网安装”;当出现密钥时,随意输入20个数字12345-67890-12345-67890即可;需要激活时选择不要联网激活,用Crack目录下的“license_405329_R2014a.lic”文件激活。

安装完成之后,将Crack/Linux目录下的libmwservices.so文件拷贝到/usr/local/MATLAB/R2014a/bin/glnxa64。

cd ..
cd Crack/Linux/
sudo cp libmwservices.so /usr/local/MATLAB/R2014a/bin/glnxa64

打开Matlab并激活:

cd /usr/local/MATLAB/R2014a/bin
sudo ./matlab # sudo不可缺少,否则选择激活文件后报错

9.Python

选用Ubuntu16.04默认的安装和配置,python版本2.7.12.

10.BLAS安装与配置

BLAS(基础线性代数集合)是一个应用程序接口的标准。caffe官网上推荐了三种实现:ATLAS, MKL, OpenBLAS。其中ATLAS可以直接通过命令行安装。MKL是微软开发的商业工具包,面向科研和学生免费开放。申请学生版的Parallel Studio XE Cluster Edition,下载parallel_studio_xe_2017.tgz。注意接收邮件中的序列号(2HWS-34Z7S69B)。

tar zxvf parallel_studio_xe_2017.tgz   #解压下载文件
 chmod 777 parallel_studio_xe_2017 -R   #获取文件权限
cd parallel_studio_xe_2017/
 sudo ./install_GUI.sh

安装完成之后,进行相关文件的链接:

sudo gedit /etc/ld.so.conf.d/intel_mkl.conf

添加库文件:

/opt/intel/lib/intel64
/opt/intel/mkl/lib/intel64

编译链接使lib文件生效:

sudo ldconfig    

如果选择安装ATLAS,在终端输入sudo apt-get install libatlas-base-dev即可。

11.Caffe的安装与配置

Caffe是由BVLC开发的一个深度学习框架,主要由贾扬清在UC Berkeley攻读PhD期间完成。参考官网上的教程以及Github上针对Ubuntu15.04和16.04的教程。从官方下载caffe源包caffe-master

安装库文件:

sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libboost-all-dev libhdf5-serial-dev libgflags-dev libgoogle-glog-dev liblmdb-dev protobuf-compiler

安装依赖:

sudo apt-get install -y build-essential cmake git pkg-config
sudo apt-get install -y libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler   libatlas-base-dev libgflags-dev libgoogle-glog-dev liblmdb-dev
sudo apt-get install --no-install-recommends libboost-all-dev

Python接口依赖:

sudo apt-get install  the python-dev
sudo apt-get install -y python-pip
sudo apt-get install -y python-dev
sudo apt-get install -y python-numpy python-scipy # (Python 2.7 development files)
sudo apt-get install -y python3-dev
sudo apt-get install -y python3-numpy python3-scipy # (Python 3.5 development files)

在python文件夹内,使用root执行依赖项的检查与安装:

sudo su
cd caffe-master/python
for req in $(cat requirements.txt); do pip install $req; done

Makefile.config:

cd ~/caffe-master
cp Makefile.config.example Makefile.config

配置如下:

## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!

# cuDNN acceleration switch (uncomment to build with cuDNN).
 USE_CUDNN := 1

# CPU-only switch (uncomment to build without GPU support).
# CPU_ONLY := 1

# uncomment to disable IO dependencies and corresponding data layers
  USE_OPENCV := 1
# USE_LEVELDB := 0
# USE_LMDB := 0

# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
#    You should not set this flag if you will be reading LMDBs with any
#    possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1

# Uncomment if you're using OpenCV 3
 OPENCV_VERSION := 3

# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++

# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr

# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
        -gencode arch=compute_20,code=sm_21 \
        -gencode arch=compute_30,code=sm_30 \
        -gencode arch=compute_35,code=sm_35 \
        -gencode arch=compute_50,code=sm_50 \
        -gencode arch=compute_50,code=compute_50

# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := mkl
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas

# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib

# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
  MATLAB_DIR := /usr/local/MATLAB/R2014a
# MATLAB_DIR := /Applications/MATLAB_R2012b.app

# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
PYTHON_INCLUDE := /usr/include/python2.7 \
        /usr/local/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
# ANACONDA_HOME := $(HOME)/anaconda
# PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
        # $(ANACONDA_HOME)/include/python2.7 \
        # $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \

# Uncomment to use Python 3 (default is Python 2)
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
#                 /usr/lib/python3.5/dist-packages/numpy/core/include

# We need to be able to find libpythonX.X.so or .dylib.
PYTHON_LIB := /usr/lib
# PYTHON_LIB := $(ANACONDA_HOME)/lib

# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib

# Uncomment to support layers written in Python (will link against Python libs)
  WITH_PYTHON_LAYER := 1

# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include  /usr/include/hdf5/serial
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial /usr/local/share/OpenCV/3rdparty/lib/

# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib

# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1

# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute

# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1

# The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0

# enable pretty build (comment to see full commands)
Q ?= @

在Makefile中配置:

LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_hl hdf5 opencv_core opencv_highgui opencv_imgproc opencv_imgcodecs

hdf5的配置:官方说这对于Ubuntu 16.04是必须的。libhdf5的版本号需要根据实际来修改下。

find . -type f -exec sed -i -e 's^"hdf5.h"^"hdf5/serial/hdf5.h"^g' -e 's^"hdf5_hl.h"^"hdf5/serial/hdf5_hl.h"^g' '{}' \;
cd /usr/lib/x86_64-linux-gnu
sudo ln -s libhdf5_serial.so.10.1.0 libhdf5.so
sudo ln -s libhdf5_serial_hl.so.10.0.2 libhdf5_hl.so

编译:

cd ~/caffe-master
make clean
make all -j4
make test -j4
make runtest -j4
make pycaffe -j4
make matcaffe -j4

编译接口matcaffe时,有如下警告:

Warning: You are using gcc version '5.4.0'. The version of gcc is not supported. The version currently supported with MEX is '4.7.x'. For a list of currently supported compilers see: http://www.mathworks.com/support/compilers/current_release.
Warning: You are using gcc version '5.4.0-6ubuntu1~16.04.2)'. The version of gcc is not supported. The version currently supported with MEX is '4.7.x'. For a list of currently supported compilers see: http://www.mathworks.com/support/compilers/current_release.
MEX completed successfully.

若OpenCV安装不正确则会在caffe编译过程中遇到如下错误:

/usr/bin/ld: cannot find -lopencv_imgcodecs
collect2: error: ld returned 1 exit status
Makefile:566: recipe for target '.build_release/lib/libcaffe.so.1.0.0-rc3' failed
make: *** [.build_release/lib/libcaffe.so.1.0.0-rc3] Error 1

MNIST测试:

sh data/mnist/get_mnist.sh  #数据预处理
sh examples/mnist/create_mnist.sh #重建lmdb文件。Caffe支持多种数据格式: Image(.jpg, .png等),leveldb,lmdb,HDF5. 生成mnist-train-lmdb 和 mnist-train-lmdb文件夹,这里包含了lmdb格式的数据集
sh examples/mnist/train_lenet.sh #训练mnist

输出:

I1019 21:48:30.078994 20063 caffe.cpp:217] Using GPUs 0
I1019 21:48:30.092034 20063 caffe.cpp:222] GPU 0: GeForce GTX TITAN X
...
....
.....
I1019 21:48:49.415398 20063 solver.cpp:317] Iteration 10000, loss = 0.00242468
I1019 21:48:49.415410 20063 solver.cpp:337] Iteration 10000, Testing net (#0)
I1019 21:48:49.479605 20063 solver.cpp:404] Test net output #0: accuracy = 0.9914
I1019 21:48:49.479625 20063 solver.cpp:404] Test net output #1: loss = 0.0284448 (* 1 = 0.0284448 loss)
I1019 21:48:49.479629 20063 solver.cpp:322] Optimization Done.
I1019 21:48:49.479632 20063 caffe.cpp:254] Optimization Done.

12.Caffe下Matlab接口Demo测试

在使用Matlab运行caffe库时,即运行文件”caffe-master/matlab/demo/classification_demo.m”。遇到的错误信息如下:

Invalid MEX-file 'caffe-master/matlab/+caffe/private/caffe_.mexa64': libcudart.so.8.0: cannot open shared object file: No such file or directory

错误原因是由于Matlab找不到caffe.mexa64所依赖的所有库文件的路径,此时可以使用ldd命令来查看caffe\.mexa64内库文件的地址:

//1. 在Ubuntu系统的命令终端

ldd *caffe_.mexa64

结果输出的是库文件对应的地址,与下文相对的缺失的库文件的地址可在此找到:

libcudart.so.8.0 => /usr/local/cuda-8.0/lib64/libcudart.so.8.0
libcublas.so.8.0 => /usr/local/cuda-8.0/lib64/libcublas.so.8.0
libcurand.so.8.0 => /usr/local/cuda-8.0/lib64/libcurand.so.8.0
libcudnn.so.5 => /usr/local/cuda-8.0/lib64/libcudnn.so.5

//2. 在Matlab命令窗口输入

!ldd *caffe_.mexa64

结果在Matlab窗口的输出信息中发现:

libcudart.so.8.0 => not found
libcublas.so.8.0 => not found
libcurand.so.8.0 => not found 
libcudnn.so.5 => not found

解决方法:通过如下命令将默认路径链接到真实路径下:

sudo ln -s /usr/local/cuda-8.0/lib64/libcudart.so.8.0 /usr/local/MATLAB/R2014a/sys/os/glnxa64/libcudart.so.8.0
sudo ln -s /usr/local/cuda-8.0/lib64/libcublas.so.8.0 /usr/local/MATLAB/R2014a/sys/os/glnxa64/libcublas.so.8.0
sudo ln -s /usr/local/cuda-8.0/lib64/libcurand.so.8.0 /usr/local/MATLAB/R2014a/sys/os/glnxa64/libcurand.so.8.0
sudo ln -s /usr/local/cuda-8.0/lib64/libcudnn.so.5 /usr/local/MATLAB/R2014a/sys/os/glnxa64/libcudnn.so.5

重新启动Matlab使之生效。

另外,运行此例需要下载CaffeNet模型(Please download CaffeNet from Model Zoo before you run this demo.)https://github.com/BVLC/caffe/wiki/Model-Zoo

|| name: BVLC CaffeNet Model

|| caffemodel: bvlc_reference_caffenet.caffemodel

|| caffemodel_url: download

|| license: unrestricted

详细说明可参见”caffe-master/models/bvlc_reference_caffenet”…

参考:

ubuntu14.04+cuda8.0(GTX1080)+caffe安装

深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0

深度学习框架torch/caffe/tensor/mxnet安装